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Abstract. Several problems of interest in planetary infrared remote sensing are

investigated using a new radiative-conductive model of energy transfer in regoliths: the

solid-state greenhouse effect, thermal beaming, and reststrahlen spectra. The results of the

analysis are as follows: (1) The solid-state greenhouse effect is self-limiting to a rise of a

few tens of degrees in bodies of the outer solar system. (2) Non-Lambertian directional

emissivity can account for only about 20% of the observed thermal beaming factor. The
remainder must have another cause, presumably surface roughness effects. (3) The

maximum in a reststrahlen emissivity spectrum does not occur exactly at the Christiansen

wavelength where, by definition, the real part of the refractive index equals one, but

rather at the first transition minimum in reflectance associated with the transition from

particle scattering being dominated by volume scattering to that dominated by strong

surface scattering. The transparency feature is at the second transition minimum and does

not require the presence of a second band at longer wavelength for its occurance.

Subsurface temperature gradients have only a small effect on emissivity bands.

1. Introduction

Hapke [this issue] (hereinafter refered to as paper 1) intro-
duced a new model for thermal and radiative transfer in plan-

etary regoliths. This model simultaneously solves the radiative

transfer equation for incident visible (including the near-UV,
visible, and near-IR wavelength region) and emitted thermal

infrared radiation and the heat conduction equation. Approx-

imate analytic expressions are obtained for the distribution of
visible and IR radiation fluxes and the tempe rature as a func-

tion of depth below the surface of the medium, the visible

hemispherical reflectance, and IR directional and hemispher-

ical emissivities of a medium of anisotropically scattering par-

ticles. The solid-state greenhouse effect and the contribution of

radiation to the thermal conductivity appear intrinsically in the

model with no ad hoc additions.

In this paper the new model is applied to three problems of
interest in the remote sensing of planetary regoliths. Only

time-independent solutions are considered. Section 2 analyzes
the solid-state greenhouse in outer planet satellites. Section 3

treats the effect of a non-Lambertian emissivity on thermal

beaming. Section 4 discusses the relation between the spectra

of the refractive index and emissivity in a reststrahlen band.

The notation used in this paper is identical to that in paper

L, and all the equations are taken exactly from that reference.

which should be consulted for notation and definitions.

2. The Solid-State Greenhouse Effect

An atmospheric greenhouse effect can occur on a planet

whose atmosphere is transparent to visible light but which

absorbs thermal IR radiation. The energy of visible sunlight is

absorbed at the ground level but is radiated back into space as
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IR radiation from upper layers of the atmosphere. This re-

quires a temperature gradient to transport heat from the sur-

face to the radiating layer. On Venus this effect produces a

surface temperature that is nearly triple the radiative equilib-

rium temperature. Brown and Matson [1987] and Matson and

Brown [1989[ have pointed out that a strong solid-state green-

house effect could occur in a planetary regolith that is weakly

absorbing in the visible and strongly absorbing in the IR and

that this would have important implications for the interior

temperatures of icy satellites. However, they described the

visible radiation source term by approximate, empirical expres-

sions, rather than using the radiative transfer equation, so that

their results are quantitatively uncertain.

The results of the radiative equilibrium calculation of paper

1 will be used to calculate the subsurface temperature rise in a

regolith in equilibrium with sunlight. Equation (58) of paper 1

for the reduced temperature (temperature relative to the

blackbody radiative equilibrium temperature Tr) at infinite

optical depth below the surface is

T*(w) - T*- 7rqT*4(m)

[ 1c* *2 _2 ,1

_-q 'n-q_:,:,,+_ 7_,/_0_,_* , (1)

Ts,where all quantities are defined in paper 1: A, and B are

given by equations (56), (50b), and (50c) of paper 1, respec-

tively, T* is the reduced surface temperature, given by (61) and

(56) of paper 1; q = Jv/E_rkTr = _roT;!/_rE*Tk, J_, is incident

visible irradiance (including the near-UV, visible, and near-

IR), % is Boltzmann's constant, Tr is blackbody radiative equi-

librium temperature, E_ is reduced extinction coefficient of

the regolith, and k is solid-state thermal conductivity.

It is instructive to first calculate the temperature for the

relatively simple case where the particles of the regolith are

large compared to the wavelength and scatter isotropically.

Then several of the quantities that occur in the parameters in
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(1) can be simplified by putting QE,, = QEr = 1, [3v = [3r =

0, E v = Er, and R = ff_, = fir = 1. After substituting the

appropriate expressions from paper 1 for A, B, and _0*rs, the

quantities inside the square brackets in (1) can be factored and

combined to yield

T*(oz) = T*- rrqT*4(oo) + q/z0(1 + 2/*o)/2, (2)

where/x o = cos i and i is angle of incidence.

In both (1) and (2) the first term on the right-hand side is the

reduced surface temperature, while the second term accounts

for heat transfer by thermal radiation. The third term describes

the relative rise in subsurface temperature, that is, the green-

house effect. Note that for the simplified conditions of (2) this

term is independent of both the visible and thermal constants

of the medium and is directly proportional to the incident

irradiance J.,,. It has its maximum value of 3q/2 when/x o = 1.

At the distance of Jupiter, a regolith having a high single

scattering albedo, but otherwise like lunar soil, would have q

0.023 (see paper 1), so that 3q/2 _ 0.035, corresponding to

a greenhouse effect of only a few percent. The reason the

relative temperature rise is so small is that although a small

absorption coefficient allows the visible radiant power to be

deposited deep in the regolith, it also causes a high visual

albedo, so that less power enters the medium. The two effects

exactly cancel each other when the particles are isotropic scat-

terers.

Hence small absorption in the visible combined with high IR

opacity is not, by itself, sufficient to cause a large solid-state

greenhouse effect in a regolith. However, the temperature rise

can be increased if the particles are forward scattering, since

then both the absorbance and the albedo can be small in the

visible. To calculate the rise in temperature in this case, the full

equation (1) from (58) of paper 1 must be used. Substituting

from paper 1, factoring, collecting terms, and reverting to

unstarred (unreduced) quantities gives

2

O"0 J,, _,,/Xo

T(oo) = Ts _'2E_ T4(°°) + 2_2Erk (1 + 2_'_,%,/z0)(1 - /3,,)

• ([ (_ + 2ff,,%,/*0)+ /3,, _: (1 - 2 _- 272/*0) 1

+_,ff2 (1 +2_2tx0) 1- y__-, + 2_%,/x0

( } )]/Yv 2 'Y 0

+ /3,, 1 - 2_,,%,/x0- _,,- 2%,t_0- 2 --- 4_,,%3,_ 2 ,

(3)

where all quantities are defined in paper 1.

For realistic optical properties of a strongly forward scatter-

ing, high-albedo material in the visible, the data for dry Ant-

arctic snow measured by Schwerdtfeger and Weller [1977] will be

used. They found that between the surface and a depth of 100

cm the mean size of the snow particles increased from about

0.2 mm at the surface to 1 mm at 50 cm. The intensity of visible

light decreased according to the relation I = I o exp (-Xz),

where z is the depth below the surface of the snow and xd =

0.03, where d is the grain size. The bulk density was 0 = 0.30.

The visual albedo was 0.83, and the power of incident sunlight

per unit area on the snow was 900 cal cm -2 d 1. Since the

irradiance of sunlight is 2800 cal cm -2 d-', the cosine of the

angle of incidence at the time of the measurements was/x o =

900/2800 = 0.32.

The relative flux of visible light inside the snowpack is de-

scribed by equation (49) of paper 1 for q_*. This equation

consists of two terms. The first term describes the incident

unscattered sunlight and is negligible deeper than a few par-

ticle diameters. Below this depth only the second term re-

mains, which describes the multiply scattered sunlight and is

proportional to exp (-2y*,r*,). Hence Xz can be identified

with 2y_,r *, = 2_v%,E_,z, so that X = 2_,%,Ev.

Now, E_, = N(rQu,,, where N is number of particles per unit

volume, _ is particle cross sectional area, and Qu,, is extinction

efficiency. Since the particles are large compared with both

visible and thermal radiation, QE,, _- Qer = 1. The bulk

density is p = p_.Nrrd3/6, so N = 649Drd 3, where 4_ = P/P.,.

is the filling factor; since Ps "=- 1, 4_ -_ 0.30. Thus E v =

NcrQe,, = (6qS/rrd 3) * ('n'd2/4) * 1 = 3qb/2d, so that xd =

2_vy,,(34)/2d)d = 0.03, and _3'_ = 0.033. This gives one

relation between /3_ and w,,. A second relation involving /3_

and w,, is the measured albedo of the snow, A h = 0.83 at

/x o = 0.32, which is given by equation (65) of paper 1. The two

expressions can be solved simultaneously to give w,, = 0.997

and/3_ = 0.672, so that _,, = 0.574 and y_ = 0.0574.

The IR optical properties of snow are poorly known. Irvine

and Pollack [1968] estimate on the basis of highly uncertain

data that in the 10-25/xm wavelength range a perfect sphere

of water ice with radius 10/xm has w - 0.8 and has an average

cosine of the scattering angle _0.7. However, Salisbwy et al.

[1994a] measured the IR reflectance of water frost to be less

than 1%, which implies that w must be very small there. Thus

Yr cannot be greatly different from 1. Particles are strongly

forward scattering only if they are perfect, isolated, clear

spheres [McGuire and Hapke, 1995]. Rough-surfaced, irregu-

lar, absorbing particles have scattering patterns that are much

less asymmetric. Hence fir. is probably also close to 1.

These values will be used to calculate the solid-state green-

house effect expected for a similar material on the surface of

an icy satellite of Jupiter. Substituting them into equation (3)

and taking /*o = 1 to maximize the greenhouse effect, the

coefficient of Jj_2Erk is found to have the value 3.19. Fol-

• lowing Brown and Matson [1987], it will be assumed that k =

0.001Wm _K _.AtD = 5AU, J v= 1360/25=54.4Wm -2,

so that T_ = ('rrJv/o-o) TM = 234 K. From equation (65) of

paper 1, _#_. = /Xo(1 - Ah)/2_r = 0.0271, and T, =
_:\ * t "11/4

T,[(1 + 3, r)q_r._/'yrl = 113 K. Also, E r = E,, = 3qS/2d;

it will be assumed that q5 = 0.30, but d will be allowed to vary,

so that E_ = 0.450/d m '.

When these values are inserted into (3), the temperature

deep within the snow pack is found to be given by

T(co) = T, + 3.86 × 10Sd - 1.26 × 10-4dT4(co) K, (4)

where T._. = 113 K is the surface temperature and d is the

particle size in meters. This expression may be readily solved

for T(_). The result is plotted as the solid line in Figure 1,

which shows the rise in temperature AT = T(_) - T_. versus

regolith particle size for 10 txm -< d -< 1 cm. For d of the order

of a few tens of micrometers, similar to lunar regolith, A T

10 K. For d _ 1 mm, similar to the Antartic dry snow, AT

100 K. For d _ 1 cm, such as in a wet, terrestrial snowfall,

AT _ 120 K. The temperature rise saturates at AT _ 120 K

for larger d. As d increases, the temperature increases, but the

radiative conductivity also increases and limits the rise.

These are the greenhouse temperature rises on a nonrotat-
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ing body. However, real bodies rotate with respect to the Sun,

so that the greenhouse rise in the deep interior is proportional

to the value of the time-dependent visible irradiance averaged

over time. To a first approximation, this radiance is propor-

tional to cos i averaged over the period of rotation, (cos i)

1/Tr. Hence the temperature rise on a rotating body will be

reduced by roughly a factor of 1/_r, which is indicated by the

dashed line in Figure 1. This temperature increase does not

exceed 40 K.

Moreover, the low thermal inertias and inferred low thermal

conductivities [Brown and Matson, 1987] imply that the regolith

particle sizes on the icy satellites are probably small, similar to

lunar soil, so that the solid-state greenhouse effects that might

be expected there are relatively modest, a few tens of degrees.

Temperature rises of the order of 40 K are certainly not

negligible and, as Matson and Brown [1989] emphasize, could

have important implications for the interior structures of the

bodies. However, this analysis does not confirm the potential

increases of 400 K and more on icy Jovian satellites estimated

by their models. Matson and Brown, of course, recognized that

such high temperatures were physically impossible in icy rego-

liths but argued that sublimation, melting, and the resulting

mass transport were the processes that kept the temperatures

low. Fanale et al. [1990, p. 203] asserted that "If (and only if)

the effects of latent heat, mass transport and densification are

taken into account, we can reconcile the magnitude of the

theoretically predicted greenhouse effect with the observed

morphology of Europa ...".

However, a solid-state greenhouse effect is intrinsically dif-

ferent from an atmospheric greenhouse effect, because in the

latter the optical depth at which visible energy is deposited is

essentially independent of the bolometric albedo, whereas in

the former, the two are tightly coupled. The Matson and Brown

[1989] model did not adequately take this coupling into ac-

count, nor did it appreciate that radiation can contribute to the

thermal conductivity even at temperatures below 200 K. Melt-

ing and sublimation may very well be occurring in the interior

of Europa, as they hypothesize, but these processes are not

necessary to limit the greenhouse temperature rise.

3. Thermal Beaming

The radiometric technique [Mordson and Lebofsky, 1979] is

a major method for determining the diameters and physical

albedos of objects that are too small to be resolved. It is

especially important in the study of asteroids. This method

involves comparing measured radiances in the visible and ther-

mal IR received from the object at small phase angles. Early

models, which assumed that surfaces radiated in the IR in

accordance with Lambert's law, yielded diameters that were

systematically too large and albedos that were too small. It is

known that many surfaces, notably the Moon's, are not Lam-

bertian emitters; hence an empirical parameter to correct for

this, called the thermal beaming factor, was introduced. Most

explanations of the nature of the beaming factor, particularly

that of Spencer [1990], have concentrated on the effects of

unresolved surface roughness. However, neither the visible

reflectance nor the thermal emission from the surface of a

particulate medium are Lambertian, so that it is of interest to

enquire as to the importance of their contributions to thermal

beaming.

To estimate the magnitude of these effects it will be sufficient

to consider only the so-called standard model, in which it is

140 ....... _ ....... ' .......

120 n_

100

80
AT (K)

6O

0

0.001 0.01 0.1 1
d (cm)

Figure 1. Increase in temperature due to the solid-state

greenhouse effect, calculated from equation (4), plotted

against regolith particle size. The solid line shows AT on a
nonrotating body, and the dashed line shows AT on a rotating

body.

assumed that the body does not rotate and the regolith is in

radiative equilibrium. The visible power scattered by a spher-

ical body into zero phase angle is, by definition,

1

e_, = j,,,.n._]_2 F Ap, ' = J_..O_ZAp,,= J,,_t.2Aso]_,,, (5)

where _t is the radius of the body, Apv is the visual physical

albedo, As,, is the visual spherical (Bond) albedo, and _,, =

Apv/Asv is the visual phase integral.

The thermal power scattered by the body into zero phase

angle is

Pr= f Ir(i = e, e)_ ds_
s_

7r/2 (TO sin de,Te(/_)/x2 _r_t 2= _(_) _r e

u0

where s_ is the illuminated area on the surface of the body and

T e is the effective temperature at which the surface radiates to

space. On any illuminated unit area of the surface in equilib-

rium,

-- 4(r° Te(/_0) = JAz0[ 1 - Ah,,(/x0)], (6)
_tl "IT

so that at zero phase where/x o = /_,

PT= f', ea(/x_)[leh -- Ahv(/x)]/x2 d/x" (7)

Combining (5) and (7) gives

PTp,_,= 2"n"_" f 'oSd(P')e,, [1 -- Ah,,(p.)]_ 2 d'_. (8)

If the surface were perfectly Lambertian, the following

would be true: (1) ea(/Z ) is independent ofe and equal to Sh;

(2) Ahv(IZo) is independent of i and equal to Asv; (3) the

. . i: -¸
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Figure 2. Measured effective power per unit area emitted by

the lunar surface as a function of the angle of emergence e

compared with theoretical models of a regolith with a macro-

scopically smooth surface. The top points and curve corre-

spond to emission from the subsolar point at different e. The

bottom two curves correspond to a scan across the full Moon.

surface radiates according to Lambert's law, so that Tn(t%) =

T4(i = 0)t_o. Then the integral in (7) and (8) can be evaluated

to give

and

PT = 2_rfft2Jo(1 - As,,)�3,

Pr/P,, = (27r/3)_0(1 - A,,,,)/Asv.

To correct for non-Lambertian effects, equation (6) is mod-
ified by multiplying the left-hand side by an empirical thermal

beaming parameter 71,while keeping Ca(It ) = eh andAh,,(tto)

= Asv; thus

(TO 4

rich -_- Te(Ixo) = J,Axo(1 - A,o). (9)

Then (7) and (8) become

Pr = 27r_Ej_(1 - AsJ/3_, (10)

and

Pr/eo = (2_-13)_,,(I - AsJ/rb4s,,. (11)

A value is assumed for _v (often the lunar value), and, assum-

ing rl is known, equation (11) can be solved for A,._ andAp,, =

_oAso; then fit can be found from (5).

Requiring that (7) and (10) for Pr be equal gives the fol-

lowing expression for _:

1 1 - As_
(12)71 3

J0 8h

The value of rl based on observations of the Moon and the

Galilean satellites is rt - 0.75 [Lebofsky et al., 1986].

In order to evaluate the contribution of the intrinsic non-

Lambertian behavior of ed(bl, ) and Ahv(IJ, O) of a particulate

medium, the Moon will be taken to be a representative body.

Equation (69) of paper I was used to numerically calculate the

radiance IT(i = 0, e) emitted by the subsolar point as it moves

across the Moon's surface during a lunation. The same equa-

tion was used to calculate the distribution of radiance I(i = e,

e) across the full Moon. The equations derived in section 4 of

paper 1 were used to calculate the various quantities in (12)

and rl was evaluated. The bolometric albedo of the Moon was

taken to be Asv = 0.12 [Lane and Irvine, 1973], and the

hemispherical emissivity e h = 0.89 [Saari et al., 1972]. A value

was assumed for/3v, and wv was found from A,_,,, following

which Ah(/zo) was calculated. Similarly, a value was assumed

for _r, WT was found from eh, and then ed(_) was calculated.

IT(i, e)/was then found fromAh(/_o) and ea(/_).
The calculated predictions were compared with the lunar

thermal data reported by Sinton [1961] and Saari and Shorthill

[1972]. The results are shown in Figure 2. The triangles are

Sinton's measurements of "planetary heat," which is the power

per unit area emitted by the subsolar point as it moves across

the lunar surface during a lunation inferred from thermal IR

measurements, assuming that the Moon radiates in accordance

with Lambert's law. However, if the Moon radiated like a

perfect Lambert surface, the emitted power per unit area

would be independent of e. The observed limb darkening is an
indication of departures from Lambertian behavior. The

model curve exhibits some limb darkening, but not nearly as
much as the Moon.

The observed [Saari and Shorthill, 1972] power distribution

across the full moon is approximately proportional to /_2/3,

whereas for a Lambert surface the power would be propor-

tional to ix _. Figure 2 shows the power per unit area calculated

from the model and according to IXz/3. The amount of limb

darkening predicted by the model is too large.

The thermal beaming factor predicted by the model was

calculated by numerical integration of (12) and found to be

= 0.95.

The values of the asymmetry parameters used in calculating

the curves of Figure 2 are/3_, = /3r = 0. Other values were

tried, but the resulting curves were found to be quite insensi-

tive to this parameter. The value of As_ was varied between

0.09 and 0.15 and of e h ,from 0.85 to 0.95, again with only minor
effects.

Hence although the angular emitting and scattering proper-

ties of particulate media are not Lambertian, the departures

are insufficient to explain the observations. In particular, they

account for only 20% of the departure of rl from unity. The

Moon exhibits a surge in visible brightness at full Moon, and it

may be speculated that a similar effect might occur in the IR.

However, the visible opposition effects from planetary rego-

liths result from either or both coherent (coherent backscatter)

or incoherent (shadow hiding) phenomenon in which the di-

rection of the incident radiation plays a special role. Since

there is no external source of thermal radiation, analogous

phenomena cannot occur in the IR. Thus the other 80% of rl

is most likely due to macroscopic roughness [Spencer, 1990].

4. Spectral Emissivity

The location and contrast in features of emissivity spectra

are important for infrared remote sensing and have been the

subject of considerable recent attention. Conel [1969] and Lo-

gan and Hunt [1970] identified maxima in the emissivity rest-

strahlen spectra of particulate materials with the Christiansen

wavelength and pointed out that this wavelength was diagnos-

tic of composition. Since then these maxima have been inves-

tigated in detail by several others, including Salisbury [1993],
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Salisbury and Walter [1989], B. Henderson and B. Jakosky

Near-surface thermal gradients and mid-IR spectra: A new

model including scattering and application to real data, (sub-

mitted to Journal of Geophysical Research, 1995), and Wald and

Salisbury [1995]. A particular concern has been the effect of

subsurface temperature gradients on the wavelength of the

maxima. Henderson and Jakosky [1994, also submitted manu-

script, 1995] concluded that such temperature gradients had

only minor effects.
The formalism developed in previous sections of this paper

will be used to investigate this question further. Other authors

used the spectra of real minerals. However, such spectra usu-

ally consist of multiple overlapping bands, which tends to ob-

scure important properties of the spectra. Hence the Lorentz

model of absorption bands will be used to generate theoretical

emissivity spectra of media in radiative equilibrium with sun-

light in order to clarify and elucidate the nature of the features

of a strong reststrahlen band seen in emissivity. Lorentz theory

[e.g., Wooten, 1972] is widely accepted as providing a reliable

description of such bands [e.g., Spitzer and Kleinman, 1961].

According to the Lorentz model, the complex dielectric con-

stant (also called the dielectric function) in the vicinity of a

strong absorption band is given by

Ke = Kr + iKi, (13a)

where

2 2
I)p(V0- 1_ 2)

2 + _2v2 , (13b)Kr = nc (v_- v2) 2 +

v2_ v (13c)
K i = (v_- 1,2)2-]- _2V2'

i = _--1, nc is the continuum real part of the refractive index

outside of the band and v is the frequency; the band is char-

acterized by three parameters: the frequency of the band cen-

ter vo, the plasma frequency vp, and the collision frequency _.

By definition, the dielectric constant is the square of the

complex refractive index,

m = nr + ini, (14a)

so that

Ke = Kr + iKi = n 2- n_ + i2nrni,

which may be solved for n r and n i to give

nr = {½[(K 2 _- K2) 1/2 _- K,.]} 1/2 (14b)

_1 [(K 2 _{_ K 2) 1/2 _ Kr]}l/2. (14c)
ni : t_L\ r

In order to calculate the emissivity, a model for the wave-

length-dependent single scattering albedo W x and angular scat-

tering function PA(9) of the medium is needed. It will be

assumed that the particles are all equant and of a single size d

large compared with the wavelength h. In that case, Qex = 1

and the single scattering albedo w x is equal to the particle

scattering efficiency Qsx. Mie theory will give incorrect results

if it is used to calculate wx because it applies only to an isolated

sphere and includes diffraction, which is inappropriate for par-

ticles in a close packed medium [Hapke, 1993]. Since the par-

ticles are large compared to the wavelength, geometrical op-

tics, or ray theory, is appropriate. Hapke [1993] showed that

the following expression is a good approximation for wx when

ray theory is applicable,

(1 - Se) 2 e_,_j, (15)
w(a) =So+ 1-See _d

where

a = 4_rni/h (16)

is the absorption coefficient and S_ is the coefficient for reflec-

tion of radiation externally incident on the surface from all

directions,

_r
S_ = [RI(O) + R2(O)] cos O sin O dO, (17)

0

where R I(O) and R2(O ) are the Fresnel reflection coefficients

[Born and Wolf, 1980],

[cos O- G1] 2+ G 2

R,(O) = [cos O + G,] 2 + O 2' (18a)

[(n 2- n_) cos O - GI] 2 + [2n,ni cos O - G2] 2

R2(O) = [(n 2_ n 2) cos O + GI] 2 + [2n_ni cos O + G2] _'

(i8b)

G_(O) = {½[((n_ - n_ - sin 2 0) 2 + 4nZn2) _/2

+ (n 2 - n 2 _ sin 2 O)]} l/z, (18c)

1 n 2 4rtrrtilGz(O) = {_[(( r - n 2 - sinZ 0) 2+ ..2..2_1/2

- (n 2 - n_ - sin 20)]} _/z. (18d)

In (15) the contributions of different phenomena to particle

scattering are explicitly separated. The first term of (15) de-

scribes radiation that has been reflected by the surface of the

particle, while the second term describes light that has been

refracted into the particle and partially absorbed there or scat-

tered back out from within its volume. All orders of internal

scattering are included.

Although transparent spherical particles are strongly for-

ward scattering, highly absorbing ones are not. Furthermore,

McGuire and Hapke [1995] have shown that any departures

from a perfect sphere, such as irregular shape or surface

roughness causes the particle phase function to be more iso-

tropic. Hence, for simplicity, it will be assumed that the parti-

cles scatter isotropically in both the visible and IR, so that the

particle phase function Px(9) = 1.

Since the particles are large compared to the wavelength, the

extinction coefficient Ea will not vary appreciably in the ther-

mal IR so that % = _'T- Then for isotropic particles the

thermal radiance emerging from the surface of the medium at

wavelength h and angle e is [Hapke, 1993]

f, I 1IA(_) = W_PA('CT) + 7_2_Ua(T) e "J_ d'rr/_, (19)
71"

where qoa(ZT) is the average isotropic spectral radiance per

unit wavelength interval,

: ,/1 - (20)
5 hlg-o/kohT

U_(T) = (2_rhoc,,/X)(e " - 1) ' (21)
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Figure 3. Lorentz model spectrum of a reststrahlen band
with parameters Vp/Uo = 1.00, _/v o = 0.01, n c = 1.50. The
band center is at }to: (a) dielectric constant and (b) refractive
index.

is the Planck function, h o is Planck's constant, c o is the speed

of light in vacuum, and ko is Boltzmann's constant.

The wavelength-dependent boundary layer approximation

for the radiance is given by equation (75) of paper 1, which for

isotropic scatterers (_ = 1) is

1 Ua(T) - q_ e -2v'= (22)
_(rr) = _ Y_

where

ya 1
Ua(Ts), (23)

q_ 1 + Yx

T(rr) = TrT* (rg, (24)

T* (r'r) is given by equation (60) of paper 1, which describes

the temperature regime in a medium in radiative equilibrium

with sunlight, and

T, = T,.T*, (25)

where T* is given by equations (61) and (56) of paper 1.

This system of equations was converted to wavelength as the

independent variable and evaluated numerically with the fol-

lowing parameters: n c = 1.50, Vp/V o = 1.00, _/v o = 0.01,

)t o = colv o = 10 /,m, dlX o = 10, w,, = 0.36, /3,, = /3T =

0. The spectra of the resulting dielectric constant and refrac-

tive index are shown in Figures 3a and 3b, respectively, and the

single scattering albedo is shown in Figure 4.

Four cases of interest were studied: q = 0.26, t*o = 1,

T r = 524 K, WT = 0.52, corresponding to the subsolar point

on the Moon viewed normally; q = 0.26, t% = cos 60 °, T_ =

524 K, WT = 0.52, corresponding to a point on the lunar

surface 60 ° away from the subsolar point and viewed normally;

q = 1.067, t*o = 1, T r = 839 K, wr = 0.52, corresponding

to the subsolar point on Mercury viewed normally; and q =

0.023, /z o = 1, T_ = 234 K, wr = 0.49, corresponding to

the subsolar point on a Jovian satellite viewed normally. These

parameters were chosen in order to vary the subsurface tem-

perature gradient over a large range, as shown in Figures 3-7

of paper 1. This gradient is largest for the subsolar point on

Mercury, small for a satellite of Jupiter and negligible for i =

60 °. The values of w r were found by weighting w_ by a Planck

function with T = T_ and integrating over wavelength, as

discussed in paper 1.

According to equation (71) of paper ii the medium may be

treated approximately as emitting like a surface at the temper-

ature T_. Hence the emitted spectral radiance Ix(_) was con-

verted to an apparent spectral directional emissivity eax(p_ ) by

dividing by Ux(T.,.)/m The resulting apparent spectral emis-

sivities are shown in Figure 5. Also indicated in Figures 3-5 is

the location of the Christiansen wavelength. Figures 3-5 illus-

trate several interesting conclusions.

First, the emissivity minimum is not at the true center of the

reststrahlen band, A = )to, but is displaced well toward shorter

wavelengths. The reason can be seen by inspection of Figures

3-5. The emissivity minimum corresponds to the maximum in

wx, which occurs where the real part of the refractive index n_

<< 1, but the imaginary part rti is still relatively large, so that

the volume scattered term of w x is negligible. To a rough

approximation,

(nr -- 1) 2 + n 2

Se_(n,.+ 1)2 + n/z;

I .... I .... I .... l .... I .... I .... I .... I ....

0.8
Christianse

W_'0"6 _n I0.4 L w// ........

0.2 "" """ "_- :
I

e

t

.... "i''_, . I .... I .... I .... I .... I .... I ....0

0.6 0.7 0.8 0.9 I I .I 1.2 1.3 1.4
h/k

o

Figure 4. Single scattering albedo spectrum of a spherical

particle with d = 10Ao and the refractive index shown in

Figure 3b. Solid line is single scattering albedo; dashed line is

contribution of the surface-reflected component, S_.
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hence, if n,. << 1, Se is close to 1, w_, has a maximum, and

edx(tx) has a minimum.

Second, the short-wavelength maximum in apparent emis-

sivity is close to, but not exactly at, the Christiansen wavelengtla

)tc, which, by definition, occurs where n,. = 1.00. This is

clearly seen in Figure 6, in which the continuum refractive

index n c is varied in order to change '_c. When n c is large, the

emissivity maximum is very close to X c. However, as n c de-

creases, Xc is increasingly displaced toward shorter wave-

lengths away from the emissivity maximum.

The traditional argument [Conel, 1969; Salisbury, 1993] is

that the medium is transparent there because particle surface

scattering is negligible; hence radiation from deeper, hotter

layers of the medium reaches the surface, increasing the ap-

parent emissivity. However, Figures 4 and 5 show that the

maximum in the emissivity actually occurs at the place that

Hapke [1993] has called the first transition minimum in wx and
in reflectance• As )t increases near this minimum, n i also in-

creases rapidly, until the particle is nearly opaque and the

single scattering albedo changes from being dominated by vol-

ume-scattered light to being dominated by strong surface-

scattered light. Even though the surface scattering is small, the

medium is not transparent because the absorption coefficient is

not negligible there: at _ = Xc, c_d = 1.26.

Fortuitously, this first transition minimum always occurs

close to k c. Hence it is appropriate to continue to refer to the

associated emissivity maximum as the "Christiansen maxi-

mum," especially since this terminology is now ingrained in the

literature. However, this maximum would occur even if n r did

not go through 1.00 anywhere and even in the absence of any

subsurface temperature gradients.

Third, there is another maximum on the long-wavelength

side of the emissivity minimum. Salisbury and Walter [1989]

have called this the "transparency feature" and attributed it to

a second region of relative transparency of the medium be-

tween two reststrahlen bands. However, Figures 4 and 5 show

that this maximum is actually caused by a second transition

minimum in wx, where the particle albedo changes from being

dominated by strong surface scattering to being dominated by

volume scattering as n i decreases with increasing wavelength

].2 .... i , . , i .... i .... i .... i .... i , • .e, i ....

0.8 __,
0.6

eda(P) Moon (i -0, e = O) _,
0.4 _ Mercury(i =O,e =0)

'k_k__xiOm)at/on (e = O)0.2
\ Moon (i = 60 °, e = O)

0 i i i , I .... I .... I .... I , , , , I .... I , , I , I ....

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
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Figure 5. Apparent emissivity spectra of a regolith com-

posed of isotrotropically scattering particles with the spectral

single scattering albedo shown in Figure 4, in equilibrium with

sunlight, and illuminated and observed under different condi-
tions.
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Figure 6. Emissivity spectra, showing the effect of varying
the continuum real refractive index no. The arrows indicate the

wavelengths of the corresponding Christiansen wavelengths

)t c. Note the displacement of )_c from the emissivity maxi-

mum.

[Salisbury, 1993; Hapke, 1993]. It occurs even in the absence of

a second absorption band. The wavelength at which the trans-

parency maximum occurs is much less sensitive to n c than the

Christiansen maximum.

Salisbury and Walter [1989] have noted a strong correlation

between the wavelengths of the emissivity minimum and the

two maxima. Such a correlation is to be expected because all

three are associated with the reststrahlen band. Thus all should

be reliable indicators of composition, especially if they can be

resolved in the same spectrum. The widths of the two maxima

should depend on particle size: as the particle size increases,
both the Christiansen maximum and the transparency feature

should increase in width.

Fourth, a large subsurface temperature gradient causes the

Christiansen maximum to shift toward shorter wavelengths

because of the increasing radiance at short wavelengths from

the Planck function. However, the amount of the shift is small•

This confirms the previous conclusion of B. Henderson and B.

Jakosky (submitted manuscript, 1995), and is also consistent

with laboratory measurements by Salisbury et al. [1994b]. The

reason for the lack of sensitivity is that the particles are not

particularly transparent there, as previously thought.

Fifth, the main effect of the subsurface gradient is to raise or

lower the emissivity nearly uniformly over the entire wave-

length region. This is why the apparent emissivity exceeds unity

for some of the curves. However, in practice, this should have

little effect. Because of calibration difficulties, absolute emis-

sivity is seldom measured. Usually, emissivity is arbitrarily nor-

malized to unity at the Christiansen maximum.

Also shown in Figure 5 is the effective spectral directional

emissivity,

_a3'a [1 + 2_]_] + /3_[1 - 2_,./_ - 23,2tx]

ead(tx) = 1 + 2_yxlx l - _a
(26)

which can readily be derived by obvious wavelength-dependent

extension of equation (71b) of paper 1. Equation (71b) of
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paper 1 was derived using the boundary layer approximation,

and also assuming a constant subsurface temperature. In Fig-

ure 5 it was assumed that/3_ = 0, in which case, equation (26)
is

l+2/x
-_ (27)

e_d(/_) % 1 + 2%/x"

Note that its shape is virtually identical to those of the other

curves in Figure 5. Hence, except in the unusual circumstance

that absolute emissivity is required, the approximate expres-

sions (26) or (27) may be reliably used to infer or calculate the

IR parameters of the medium.

5. Conclusions

Using a new model [Hapke, this issue] that simultaneously

solves the equation of radiative transfer for visible and thermal

radiation and the heat equation, three problems of interest in

the thermal properties of planetary regoliths were studied.

The solid-state greenhouse effect is shown to be self-limiting

because of the strong correlation between optical absorption
and albedo and because radiative thermal conductivity is im-

portant in a porous regolith, even at low temperatures. If the

optical properties of terrestrial snow are representative of

those of the regoliths of satellites in the outer solar system, the

maximum rise in temperature that may be expected due to a

greenhouse effect is about 40 K.

The contribution to thermal beaming caused by non-

Lambertian albedos and emissivities of a macroscopically

smooth regolith was estimated to be able to account for a

thermal beaming parameter of about 0.95, whereas the ob-
served value is about 0.75. Since coherent backscatter or

shadow hiding opposition effects cannot occur in thermal ra-

diation from smooth regoliths of small particles, it is likely that

the remainder of the beaming factor is caused by macroscopic

roughness.

The nature of features in the emissivity spectrum of a rest-

strahlen band was investigated using an artificial absorption

band generated by the Lorentz equation. It was found that the

peak that occurs on the short wavelength side of a spectral

emissivity band has been incorrectly identified as denoting the

Christiansen wavelength. This was a natural error, because the

wavelength of the maximum is close to, but not exactly at, the

Christiansen wavelength. The emissivity peak corresponds to

one of two transition minima in reflectance, where the radia-

tion scattered by a soil particle changes from volume scattering

to surface scattering. The other transition minimum occurs on

the long wavelength side of the band and corresponds to the

transparency feature seen in emissivity. Because the particles

of the regolith are not transparent at either peak, subsurface

temperature gradients have only a minor effect on the wave-

lengths of their locations. Hence the wavelengths of the two

peaks and the included minimum should be reliable diagnostic

indicators of composition.
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